Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
translated by 谷歌翻译
A key missing ability of current language models (LMs) is grounding to real-world environments. Most existing work for grounded language understanding uses LMs to directly generate plans that can be executed in the environment to achieve the desired effects. It casts the burden of ensuring grammaticality, faithfulness, and controllability all on the LMs. We propose Pangu, a generic framework for grounded language understanding that capitalizes on the discriminative ability of LMs instead of their generative ability. Pangu consists of a symbolic agent and a neural LM working in a concerted fashion: the agent explores the environment to incrementally construct valid candidate plans, and the LM evaluates the plausibility of the candidate plans to guide the search process. A case study on the challenging problem of knowledge base question answering (KBQA), which features a massive environment, demonstrates the remarkable effectiveness and flexibility of Pangu: A BERT-base LM is sufficient for achieving a new state of the art on standard KBQA datasets, and larger LMs further improve the performance by a large margin. Pangu also enables, for the first time, effective few-shot in-context learning for KBQA with large LMs such as Codex.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.
translated by 谷歌翻译
Given a few seed entities of a certain type (e.g., Software or Programming Language), entity set expansion aims to discover an extensive set of entities that share the same type as the seeds. Entity set expansion in software-related domains such as StackOverflow can benefit many downstream tasks (e.g., software knowledge graph construction) and facilitate better IT operations and service management. Meanwhile, existing approaches are less concerned with two problems: (1) How to deal with multiple types of seed entities simultaneously? (2) How to leverage the power of pre-trained language models (PLMs)? Being aware of these two problems, in this paper, we study the entity set co-expansion task in StackOverflow, which extracts Library, OS, Application, and Language entities from StackOverflow question-answer threads. During the co-expansion process, we use PLMs to derive embeddings of candidate entities for calculating similarities between entities. Experimental results show that our proposed SECoExpan framework outperforms previous approaches significantly.
translated by 谷歌翻译
Long short-term memory (LSTM) is a type of powerful deep neural network that has been widely used in many sequence analysis and modeling applications. However, the large model size problem of LSTM networks make their practical deployment still very challenging, especially for the video recognition tasks that require high-dimensional input data. Aiming to overcome this limitation and fully unlock the potentials of LSTM models, in this paper we propose to perform algorithm and hardware co-design towards high-performance energy-efficient LSTM networks. At algorithm level, we propose to develop fully decomposed hierarchical Tucker (FDHT) structure-based LSTM, namely FDHT-LSTM, which enjoys ultra-low model complexity while still achieving high accuracy. In order to fully reap such attractive algorithmic benefit, we further develop the corresponding customized hardware architecture to support the efficient execution of the proposed FDHT-LSTM model. With the delicate design of memory access scheme, the complicated matrix transformation can be efficiently supported by the underlying hardware without any access conflict in an on-the-fly way. Our evaluation results show that both the proposed ultra-compact FDHT-LSTM models and the corresponding hardware accelerator achieve very high performance. Compared with the state-of-the-art compressed LSTM models, FDHT-LSTM enjoys both order-of-magnitude reduction in model size and significant accuracy improvement across different video recognition datasets. Meanwhile, compared with the state-of-the-art tensor decomposed model-oriented hardware TIE, our proposed FDHT-LSTM architecture achieves better performance in throughput, area efficiency and energy efficiency, respectively on LSTM-Youtube workload. For LSTM-UCF workload, our proposed design also outperforms TIE with higher throughput, higher energy efficiency and comparable area efficiency.
translated by 谷歌翻译
很少有射击分类需要深层神经网络才能仅从有限的培训图像中学习广义表示,这在低数据制度中很有挑战,但很重要。最近,基于剪辑的方法显示出有希望的很少的射击性能受益于对比的语言图像预训练。基于这一点,我们质疑大规模的预训练是否可以减轻少数数据的缺陷,并通过预测的知识帮助代表性学习。在本文中,我们提出了Como,这是对预培训模型的合作,该模型结合了来自各种培训范式的各种先验知识,以获得更好的几次学习。我们的科莫包括:剪辑的语言对比知识,迪诺的视力对抗性知识以及达尔 - E的语言基础知识。具体而言,科莫在两个方面工作:很少的数据扩展和多样化的知识合奏。首先,我们通过零摄影dall-e生成合成图像,以丰富少量训练数据,而无需任何人力。另一方面,我们引入了一个可学习的多知识适配器(MK-apapter),以适应剪辑和恐龙的预测。通过这种合作,COMO可以完全释放不同的预训练方法的潜力,并将其统一以进行几次分类。我们在11个数据集上进行了广泛的实验,以证明我们方法的优势和概括能力。
translated by 谷歌翻译
在本文中,我们提出了三种方法方法方法神经网络(PMNN),逆功率方法神经网络(IPMNN),并转移了逆力方法神经网络(SIPMNN)与功率方法,逆力法和转向逆动力方法求解eigenvalue eigenvalue主要的特征值,最小的特征值和最小的零特征值的问题。这些方法与传统方法共享相似的精神,但是差异是通过自动分化(AD),神经网络学到的本征函数实现的差异操作员以及通过优化特定定义的损失函数实现的迭代。我们在高维度的几个数值示例中检查了我们方法的适用性和准确性。通过我们的多维问题方法获得的数值结果表明,我们的方法可以提供准确的本征值和本征函数近似值。
translated by 谷歌翻译
本文介绍了Kings Arena的荣誉,Kings Arena是基于国王荣誉的强化学习(RL)环境,这是世界上最受欢迎的游戏之一。与以前大多数工作中研究的其他环境相比,我们的人对竞争性强化学习提出了新的概括挑战。与对手竞争的一个代理商是一个多代理的问题;它需要概括能力,因为它具有控制和不同的对手竞争的不同目标。我们描述了国王域名荣誉的观察,动作和奖励规范,并提供了一个基于python的开源界面,以与游戏引擎进行通信。我们为纪念国王竞技场的二十个目标英雄提供了各种任务,并为具有可行的计算资源的基于RL的方法提供了初始基线结果。最后,我们展示了国王竞技场的荣誉和对挑战的可能补救措施所面临的概括挑战。所有软件(包括环境级)均可在https://github.com/tencent-ailab/hok_env上公开获得。该文档可在https://aiarena.tencent.com/hok/doc/上获得。
translated by 谷歌翻译
自Transe出来以来,基于翻译的知识图嵌入一直是知识表示学习的最重要分支之一。尽管近年来许多基于翻译的方法取得了一些进展,但表现仍然不令人满意。本文提出了一种名为Triplere的新颖知识图嵌入方法,带有两个版本。Triplere的第一个版本创造性地将关系向量分为三个部分。第二版利用了残留的概念,并取得了更好的性能。此外,尝试使用NodePiece编码实体的尝试可以实现有希望的结果,从而减少了参数大小,并解决了可伸缩性问题。实验表明,我们的方法在大规模知识图数据集上实现了最先进的性能,并在其他数据集上实现了竞争性能。
translated by 谷歌翻译